A Fiber Bragg Grating—Bimetal Temperature Sensor for Solar Panel Inverters

نویسندگان

  • Mohd Afiq Ismail
  • Nizam Tamchek
  • Muhammad Rosdi Abu Hassan
  • Katrina D. Dambul
  • Jeyraj Selvaraj
  • Nasrudin Abd. Rahim
  • Seyed Reza Sandoghchi
  • Faisal Rafiq Mahmad Adikan
چکیده

This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Transformer Winding Temperature Monitoring System Based on Fiber Bragg Grating

High temperature is one of the important reasons causing the fire in power system. Therefore, the early warning could be told by monitoring the temperature and effective measures could be taken. The corresponding accidents will be reduced. The traditional transformer winding temperature monitoring methods are electrical signal measurement and infrared measurement. Such electrical signal sensors...

متن کامل

Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing.

We present fiber Bragg grating pressure sensors in air-hole microstructured fibers for high-temperature operation above 800 degrees C. An ultrafast laser was used to inscribe Type II grating in two-hole optical fibers. The fiber Bragg grating resonance wavelength shift and peak splits were studied as a function of external hydrostatic pressure from 15 psi to 2000 psi. The grating pressure senso...

متن کامل

Fiber Bragg Grating (FBG) is used as modeling and simulation for temperature sensor

This paper deals with mathematical modeling, design and application of Fiber Bragg Grating as temperature sensor .In this paper we used the MATLAB and filter characteristics simulation software as a tool for simulation results. The fabrication of Fiber Bragg Grating, their characteristics and fundamental properties are described. The reflectivity of FBG is described using simulation results. Th...

متن کامل

Unique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating

In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...

متن کامل

Fiber Optic Bragg-Grating Sensors

In-fibre Bragg gratings are sensor elements which are photo-written into optical fibre using intense ultra-violet laser beams and have the potential for the measurement of strain/deformation and temperature with applications reported including monitoring of highways, bridges, aerospace components and in chemical and biological sensors. The development of a fiber Bragg grating (FBG) measuring sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011